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Abstract

The COVID-19 pandemic brought unprecedented policy responses and a large literature

evaluating their impacts. This paper re-examines this literature and investigates the role of

researchers’ degrees-of-flexibility on the estimated effects of mobility-reducing policies on

social-distancing behavior. We find that two-way fixed effects estimates are not robust to minor

changes in usually-unexplored dimensions of the degree-of-flexibility space. While standard

robustness tests based on the sequential addition of covariates are very stable, small changes in

the outcome variable and its transformation lead to large and sometimes contradictory changes

in the estimates, where the same policy can be found to significantly increase or decrease

mobility. Yet, due to the large number of degrees-of-flexibility, one can focus on a set of

results that appears stable, while ignoring problematic ones. We show that recently developed

heterogeneity-robust difference-in-differences estimators only partially mitigate these issues,

and discuss how a strategy of identifying the point at which a sequence of ever more-stringent

robustness tests eventually fail could increase the credibility of policy evaluations.
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1 Introduction

The COVID-19 crisis has brought unprecedented responses by national and sub-national authori-

ties. At the center of this public action has been mobility restrictions and lockdown orders aimed

at reducing the risk of virus transmission through constrained social contacts. More than a year

after their initial implementations, and as subsequent waves of COVID-19 cases surged in many

countries around the world, such measures continue to be reintroduced and their efficacy debated.

Therefore a key question is whether, and to what degree, these mobility-reducing policies cause

reductions in measured mobility.

Due to the urgency of this question, and the near-real time availability of data, the scientific

literature focusing on the effect of what we refer to as ‘mobility-restricting policies’ (MRPs)1 on

mobility grew at near exponential rate: as of March 2021, a Google Scholar search of “mobility”

and terms related to MRPs implemented in response to the COVID-19 pandemic (“shelter-in-

place”, “stay-at-home”, or “lockdown”) returned over 23,000 results. A large number of these

studies focus on estimating the impacts of mobility-restricting policies on measured mobility with

the level of analysis varying from city to worldwide. In particular, due to the sharp temporal

adoption of MRPs, many of these studies leverage a difference-in-differences (DD) based design.

This previous literature does not reach a consensus; results range from finding that “there is little

evidence... that stay-at-home mandates induced distancing” (Gupta et al., 2020) to “clear effects of

stay-at-home orders on social distancing” (Allcott et al., 2020). At the same time, several studies

highlight existence of pre-trends, often interpreted as indicating that voluntary mobility reductions

were an important factor (e.g. Gupta et al. 2020; Andersen 2020; Abouk and Heydari 2021).

In this paper, we re-examine the evidence from this early literature and assess the impact of

mobility restrictions on county-level mobility in the United States, leveraging MRPs uniquely

gathered across state, county, and city levels. First, we document and correct important gaps in

the source data on mobility restriction policies used in the previous literature. For example, one

1These policies are also described as “non-pharmaceutical interventions (NPIs)” in the literature

3



commonly used data set indicated that around one third of U.S. counties enacted an emergency

declaration by the end of March 2020 (NACo, 2020); our data gathering showed that the true

number was twice as large. Using the corrected data, we consider a broad set of five MRPs: State

emergency declarations, State shelter-in-place orders, State earliest restriction or closure, County

emergency declarations, and County shelter-in-place orders. We supplement these MRPs data

with an extensive set of 20 daily mobility indicators derived from anonymized mobile device ping

information provided by Safegraph, Google Mobility, PlaceIQ, and Cuebiq.

Second, we estimate the impact of MRPs on observed mobility using standard two-way fixed

effects and event-study methods, following the approach used in the previous literature. We ex-

amine a wide range of specifications that were used in the previous literature (although in distinct

individual papers), focusing on linear models, log-linear models, seven-day moving averages, and

first-differences. We further supplement these analyses by considering all mobility outcomes ob-

served at the county-day level, and also estimate the impact of MRPs individually and in combi-

nation. The later is especially important since MRPs are almost always overlapping (e.g., coun-

ties with a county shelter-in-place order may also have a county emergency declaration or a state

shelter-in-place order) and temporally dependent (e.g., emergency declarations typically precede

shelter-in-place orders).

Most importantly, the wide range of specifications we consider allows us to assess whether the

estimates of the impact of MRPs on mobility in the prior literature paint a representative picture

of the evidence. In particular, we emphasize the wide range of researchers’ degrees of flexibil-

ity (or freedom) that exist over many modelling and specification choices: the outcome variable

(mobility measure) and its functional form in the regression model, covariates included, estimator,

and the spatial and temporal unit of analysis (e.g., state or county, daily or weekly). Rather than

focusing on a “clean” and robust set of results in support of a consistent narrative, we report esti-

mates along many dimensions of the degree-of-flexibility space, while highlighting contradictory

findings, failing robustness tests, and ambiguous results.

At the county scale, we find that some conclusions drawn about the efficacy of mobility re-
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stricting policies in the previous literature using two-way fixed effect regressions are not robust to

seemingly minor variations in the estimating model, casting doubts on the internal validity of the

prior estimates. Depending on the mobility outcome and policy considered, several estimates have

the “wrong” sign, where the MRP is found to increase mobility. For a given mobility measure,

several estimated effects switch sign, but remain statistically significant, when using the log of

the outcome variable instead of the level. Most alarmingly, the standard robustness tests based on

the sequential addition of covariates fail to provide warning signs of specification sensitivity. The

fact that robustness on covariates does not imply robustness on transformations of the outcomes

illustrates that focusing on “one-dimensional” robustness checks can be misleading.

Third, we find that event-study estimates in this context are plagued with pre-trends, which

have been interpreted by previous studies as evidence of voluntary social distancing in anticipation

of the policy announcement. These issues are most pronounced using the standard event-study es-

timators. We apply recent heterogeneity-robust DD estimators and find that they partially mitigate

these issues, but only for certain outcome variables and functional forms. Overall, we document

that at the county-day level, the existing tools for difference-in-differences analysis —both stan-

dard and recently developed methods—are insufficient for making rigorous and specific conclu-

sions regarding the causal impact of MRPs on mobility. To be clear, we do not assert that MRPs

were ineffective; strong patterns in the data are highly suggestive of a substantial impact on mobil-

ity. Rather, our conclusion is that DD-based evaluation methods are not yet a sufficient match for

the complexity presented by multiple overlapping policies and feedback processes to the behav-

ioral outcome of interest at a fine-scaled spatio-temporal level (i.e., county-by-day). The ultimate

concern of broader policy interest is not just whether MRPs reduced mobility but also whether

actual infections and deaths were curtailed. However, this latter step requires rigorous and robust

treatment of the first step, which we show is much less straightforward than initially expected.

Besides our direct contribution to the literature on the efficacy of mobility-restricting policies,

our paper brings to light issues related to the meta-scientific literature on researchers’ degrees of

flexibility and the credibility of economics research (see Christensen and Miguel (2018) and Kasy
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(2021) for recent overviews). In any empirical study, researchers are confronted with a multitude

of decisions on how to handle the data and conduct the analyses, a garden of forking paths in

Gelman and Loken (2013)’s terms. The resulting findings are conditional on the specific path of

decisions made along the way, leaving open the question of whether different paths would have

lead to very different conclusions.

The sensitivity of empirical results to researcher degrees of flexibility have been highlighted in

several replication studies (Aiken et al., 2015; Foote and Goetz, 2008; Clemens and Hunt, 2019),

as well as in more exhaustive “many-analysts” experiments, where multiple research teams are

asked to analyse the same data set (see e.g., Silberzahn and many authors (2018); Botvinik-Nezer

and many authors (2020); Huntington-Klein et al. (2021)). These studies are based on artificial

research exercises, where each researcher’s goal is not to write a full-length article but instead

to produce an isolated analysis and set of findings. One might hope that in the process of actual

research, major instability of the results over alternative researcher’s decisions would be discovered

and highlighted, either in different papers or within the “robustness” section of a given paper. The

recent COVID-19 literature provides a natural experiment to assess whether this is actually the

case: Due to the importance and urgency of the COVID crisis, a remarkable number of studies

focusing on the same research question were released and/or published in a very short period of

time. This represents a unique opportunity to investigate in a real setting both the influence of

researchers’ degrees of flexibility on the study’s conclusions; and whether the sensitivity of the

results is reflected in each paper or across the combined literature.

By estimating MRP impacts on mobility along all main dimensions of the researchers degrees

of flexibility in our setting, we can point to several concerns that have not been fully addressed in

the previous literature. We find that apparently innocuous researcher’s decisions such as modelling

the dependent variable with the log transformation or leaving it in levels can have a large impact on

the results, even impacting the signs and statistical significance of the estimated effects. Further,

we find that for almost every well behaved result obtained, we can find an alternative and equally

reasonable specification which gives opposite sign or null results. These issues are mitigated but
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not fully resolved by the use of recent heterogeneity-robust DD estimators (e.g., Callaway and

Sant’Anna 2020). Finally we find pervasive pre-trends in the data for virtually all MRP and mo-

bility outcomes, which can only be satisfactorily addressed by adopting a particular specification.

We do not take a stance as to why the previous literature largely focuses on highlighting the

‘clear’ impacts of MRPs on mobility. This could be due to random factors, the supply side of

research production (e.g., selective reporting of results in agreement with the researchers’ priors,

selective submission of results that provide a consistent story, biased sampling of the specifications

space when exploring possible models), or the demand side (anticipated need by researchers to

provide ‘clean’ results and story as a necessary step for publication). Our own previously published

research in this area highlighted significant impacts of emergency declarations (one prominent

example of MRP) on mobility outcomes, though also documented large pre-trends in event-studies

(Weill et al., 2020). Furthermore, the econometric research focused on issues with two-way fixed

effects specifications developed extremely rapidly, and in parallel with the applied COVID-19

policy research. Many of the shortcomings linked with the use of two-way fixed effects estimators

under staggered adoption designs have only recently became apparent.

Concerns about selective reporting of results, p-hacking, and pre-testing are not new. Leamer

(1978) recommended more than 40 years ago that researchers should report the results of all esti-

mations that they tried, as opposed to focusing on a few chosen ones. Similarly, in the context of

event-studies, where the causal interpretation of a policy effect relies on the absence of pre-trends,

recent research shows that focusing on pre-trend tests that “work” can induce substantial bias in

the reported estimates (Roth, 2019). Unfortunately, the recommendation made by Leamer is far

from being a standard practice today. When featuring alternative specifications to the main model,

published studies tend to report “robustness tests” that are based on the inclusion of alternative

covariates in the regression model. These reported robustness tests also generally agree with the

main findings of the research. As we show in this paper, failure to consider robustness analysis

along all relevant dimensions (outcomes under study, functional form, covariates, and estimator)

can lead one to wrongly infer that the estimated effect is stable.
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The remainder of this paper proceeds as follow. First, we summarize a selected set of exist-

ing empirical studies of the impact of MRPs on mobility (directly below). We then present our

analysis, beginning with the data (Section 2) and results of the standard two-way fixed effects

models (Section 3). Next, we explore robustness tests (Section 4) and contradictory results from

event studies (Section 5). Finally, we round out the analysis with results from heterogeneity-robust

estimators (Section 6).

1.1 Review of existing empirical evidence

Table 1 summarizes notable studies that address similar questions using difference-in-differences

designs include a set of working papers (Gupta et al., 2020; Andersen, 2020; Elenev et al., 2021)

and peer-reviewed articles (Painter and Qiu, 2021; Villas-Boas et al., 2020; Allcott et al., 2020;

Abouk and Heydari, 2021; Dave et al., 2021; Goolsbee and Syverson, 2021). While the shared

methodology might suggest a relatively uniform approach, examination of the literature indicates

the absence of a consensus on many empirical design choices. For example, each analysis uses a

different transformation of the key outcome/dependent variable (mobility metric), including levels

(Gupta et al.); natural log (Allcott et al.; Goolsbee and Syverson; Elenev et al.); the change relative

to a fixed pre-COVID baseline in level or log (Villas-Boas et al.; Dave et al.); the daily change

relative to a daily 2019 counterfactual (Andersen); and daily first differences (Painter and Qiu;

Abouk and Heydari). Four of these articles use weighted regression population weights, one used

weights based on the number of visits to stores in January (Goolsbee and Syverson), another via

a synthetic control method (Villas-Boas et al.), while the rest do not. Mobility data are typically

drawn from a single source, with Safegraph being the most common. Most studies focus only

on mobility response measured at the state level. Exceptions include Allcott et al. who focus

on the county level but combines county and state policies into one metric. Gupta et al. also

focuses on the county level and considers state and county policies, albeit not with full event

study regressions where the different policy effects are estimated simultaneously. These analyses

typically rely on existing databases of reported policies (e.g., such as those collected by the Kaiser
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Family Foundation or the New York Times) and none (to our knowledge) gather substantial new

data on which counties or cities enacted local policies.

Table 1: Selected Studies Analyzing the Impact of MRPs on Mobility Outcomes

Article Dependent variable
transformation

Population
weighted

Mobility data source MRPs Units

Gupta et al.,
2020

no no PlaceIQ, Safegaph,
Google, Apple

county
and
state

county
and
state

Painter and
Qiu, 2020

first-difference no Safegraph state county

Andersen,
2020

deviation from 2019
counterfactual; log for
visits

yes Safegraph state state
(event
studies)

Villas-Boas et
al., 2020

%-deviation from pre-
COVID-19 period (2/10-
3/8)

no (weight
with SCM)

Unacast, Google state state

Allcott et al.,
2020

log yes Safegraph county county

Abouk and
Heydari, 2021

first-difference yes (TWFE) Google state state

Dave et al.,
2021

deviation from pre-
COVID-19 period (2/6-
2/12)

yes Safegraph state state

Goolsbee and
Syverson, 2021

log yes (vari-
ous)

Safegraph county
and
state

county

Elenev et al.,
2021

raw shares; log for visits yes and no Sagegraph county
and
state
merged

county

Notes: SCM = synthetic control method, TWFE = two-way fixed effects.

Issues with pre-trends are apparent and discussed in several of these articles. Many observe that

variation in mobility is not fully or even largely explained by MRPs. For example, Allcott et al.

find that “the magnitude of policy effects is modest, and most social distancing is driven by vol-

untary responses”. Similarly Abouk and Heydari conclude that “(a)lthough evidence for reduced

social contact in the United States is strong... people in most states had already started to reduce
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the time they spent outside their homes before any NPI (non-pharmaceutical intervention) was im-

plemented”, and Goolsbee and Syverson concludes that “[...] the vast majority of this drop is due

to individuals’ voluntary decisions to disengage from commerce rather than government-imposed

restrictions on activity.” . Only one article focuses on the prospect of time varying treatment ef-

fects in its main results: Andersen observes that “it is possible that difference-in-differences and

event study estimates are biased by comparisons between early and late treated units”. Within this

literature we could find no discussion focused on estimates that have an unexpected sign or that

switch sign across plausible alternative specifications, as we do below. Taking the previous litera-

ture as a starting point, we have designed our paper to fully explore the implications of empirical

design choices (data sources, estimator, functional form choice, policy under consideration, etc)

on the estimated impact of mobility-restricting policies on mobility. Finally, one article explicitly

investigates the role of spillover effects between nearby counties within the framework of two-way

fixed effects models (Elenev et al.).

2 Data Sources and Preliminary Analysis

Our empirical analysis of the impact of mobility restricting policies on mobility outcomes is con-

ducted with a comprehensive set of data files on mobility outcomes collected from mobile device

signals, combined with extensive MRP data assembled at the city, county and state level. This

section describes the data sources, defines the primary outcome and control variables, and then

presents some summary statistics.

2.1 Mobility Measures

We assembled a daily data set of 20 mobility measures at the county level collected during the first-

wave of the COVID-19 pandemic in the United States. We restrict our analysis to start in January

2020 and to end on April 21st, 2020. This corresponds to the time span between the earliest

date the mobility data are available, and the date where some jurisdictions began to lift distancing
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orders on April 21st, 2020. Our mobility measures are all based on anonymized and aggregated

mobile device signal (“pings”) data and come from four different sources. The variables are listed

in Table 2 along with their source and summary statistics. Additional information on each of

the variables appears in Table A.1 in the Appendix. Safegraph data are provided at the census-

block group level, which we aggregate to the county level. PlaceIQ data were used by Couture

et al. (2020) to derive the Device Exposure variable at the county-level. Google Mobility data are

provided at the county-level over the period February 15 - April 21 (expressed in changes relative

to the 5-week period from January 3 to February 6, 2020). Cuebiq data are provided at the county

level.

The summary statistics in Table 2 include the number of county-day observations (N) for which

each of the mobility measures are available between January and April 2020. Differences in the

temporal and spatial coverage of these measures are evident, with Safegraph and Cuebiq providing

the best spatial coverage with almost all counties represented (over 285,000 observations, amount-

ing to 3069 counties and 93 days). Google mobility data are not consistently available for all days

and counties due to Google’s anonymity constraints. Many of these variables are designed to cap-

ture the amount of time spent at or away from home by individuals,2 other variables correspond to

specific activities outside the home,3 while some other variables can be interpreted as mobility and

social mixing indices.4

In the fourth column we report the sample mean of the various mobility measures. For example,

the Safegraph variable Completely Home indicates that 27% of sampled devices spend the day

completely at home, while the Median Distance travelled outside the home is 10,683 meters on

average between January 20 to April 21. Similar to the information from Safegraph, Cuebiq data

indicates that 28% of device users are Staying Around Home. The Google Mobility data shows

both positive and negative averages, as each of its mobility indicators are normalized relative to

same day of the week between January 3 to February 6, 2020, before the effects of the COVID-

2Staying Around Home (%) Average Time Not Home, Median Not Home Dwell Time, Completely Home (%),
Median Home Dwell Time

3Grocery and Pharmacy Retail and Recreation Workplaces, Full Time Work (%)
4Device Exposure, Median Distance, Mobility Index
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Table 2: Summary Statistics and Sources for Mobility Outcomes

Source Variable Re-signed N Counties Mean

Safegraph (SG) Average Time Not Home yes 285,405 3069 284.55
Away at least 3 hours (share) yes 285,405 3069 0.15
Completely Home (share) no 285,405 3069 0.27
Full Time Work (share) yes 285,405 3069 0.06
Median Distance yes 285,405 3069 14104.85
Median Home Dwell Time no 285,405 3069 616.82
Median Home Share (share) no 285,405 3069 0.74
Median Not Home Dwell Time yes 285,405 3069 139.43
Part Time Work (share) yes 285,405 3069 0.09

PlaceIQ (PQ) Device Exposure yes 183,117 1969 89.82
Google (GM) Grocery & pharmacy yes 134,843 2425 1.19

Parks yes 42,445 944 8.84
Residential no 77,185 1526 7.95
Retail & Recreation yes 139,935 2517 -12.21
Transit stations yes 64,358 1105 -13.11
Workplaces yes 164,680 2722 -18.87

Cuebiq (CQ) Mobility Index yes 285,413 3069 3.65
Staying Around Home (share) no 285,413 3069 0.28
Staying Around Neighborhood no 285,413 3069 0.37
Traveling more than 10 miles yes 285,413 3069 0.34

Notes: Table 2 reports summary statistics for the 20 mobility indicator variables analyzed in this
paper. The number of observations corresponds to the number of counties in which a mobility in-
dicator is observed multiplied the number of days it is observed. The “re-signed” column indicates
if a mobility indicator will be re-signed in the analysis below so that increase in the variable can be
interpreted as increase in social distancing. In the tables and figures below re-signed variables will
be identified with an asterisk next to their name.

19 pandemic were fully realized in the U.S. Interestingly, within these relative Google measures

we see that Parks and Residential time have positive averages, while Retail & Recreation, Transit

stations, and Workplaces all have negative averages, consistent with changes in mobility behavior

to increase social distancing.

Figure 1 plots the mobility and activity patterns in the anonymized “pings” data, with week-

days shown by red dots and weekend days shown with blue dots. To ease comparisons between

outcome variables, for the remainder of the paper we analyze “re-signed” mobility outcomes

so that increase in the variable can be interpreted as increase in social distancing. For exam-
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ple, Traveling more than 10 miles was multiplied by minus one: on the first row and fourth column

of Figure 1, the variable indicates an initial average level of about -0.4 in January (meaning that

on average at the county level, 40% of people moved further than 10 miles per day), and then in-

creases quickly to -0.3 in April. When working with the log of the outcomes, we first take the log

and then multiply by minus one. To keep track of this convention, variables that were re-signed are

highlighted with an asterisk next to their name. Several notable features emerge from the simple

analysis in Figure 1: First and foremost, there is an important reduction in mobility and social ac-

tivity that occurs around the middle of March 2020, when the majority of the U.S. population was

under some form of MRP. This reduction in mobility is evident for all of the outcome variables.

For example, the Cuebiq Staying Around Home nearly doubles, and the Place IQ Device Exposure

is halved. Second, the implied mobility by these indicators appears to be reduced more strongly

during weekdays, consistent with the large increase in unemployment claims and in work from

home observed at that time. Finally, for most of the mobility indicators, there is no reversion to

pre-mid-March mobility and activity levels as of the of April 2020.

In addition to Figure 1, Figure A.16 in the appendix presents Pearson correlation coefficients

between these different outcome variables used to measure mobility. Except for Google Mobility

Parks and Safegraph Median Distance, all outcome variables are strongly correlated, with corre-

lation coefficients well above 0.5. However, the analysis in Sections 4 and 5 will show that the

choice of mobility outcome variable has an important impact on the estimated effect of MRPs on

mobility.

Table 3 report the sample averages of the control variables used in the empirical analysis below.

In our sample of 3069 counties, there are on average 2.14 confirmed cases of COVID-19 per

day, and 27 % of counties-days observations have at least one confirmed case of COVID-19 (8%

experienced at least one death attributed to COVID-19). Naturally, all these indicators of pandemic

severity have means close to zero before the Mar 11, and much larger means afterwards. The

remaining rows of Table 3 report the average daily temperature (in ◦F), precipitation and snow

(both in hundreds of inches).
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Figure 1: Trends in Daily Mobility Outcomes, January-April 2020

Notes: Some mobility outcomes are resigned (indicated by a star next to the variable name) so that increases in a
given outcome are interpreted as increases in social distancing. All mobility outcomes are in levels, except for Google
Mobility which is only available in % change relative to a baseline.

2.2 Mobility Reducing Policies

We obtained data on the date of declaration of COVID-19 mobility reducing policies (MRPs) in

the U.S. from February-April at the state, county and city level. For all three levels, our policies of

interest include emergency declarations (EDs) and shelter-in-place orders (SIPOs). For state-level

policies we used data provided by Fullman et al. (2020). For counties we used data collated by

the National Association of Counties (NACo, 2020) as a starting point. The NACo data constitute

an incomplete set of county-level policies implemented. No pre-existing data set was available for

cities. To fill in these gaps in county and city MRPs, we conducted a manual search for the dates
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Table 3: Summary Statistics for Main Control Variables

Variable N Counties Mean Min Max

Cases 285417 3069 2.15 0.00 2174.00
Cases > 0 285417 3069 0.27 0.00 1.00
Cases sqrt 285417 3069 0.34 0.00 46.63
Deaths > 0 285417 3069 0.08 0.00 1.00
Precipitation 282997 3043 0.11 0.00 5.16
Snow 282997 3043 0.09 0.00 16.59
Temperature (mean) 282997 3043 43.80 -18.39 87.75

of either type of declaration for (1) all U.S. counties lacking either a ED or SIPO in the NACo

data, as well as (2) cities with a population of 50,000 or greater.5 When existent, these dates were

typically found in media reports, government websites or government meeting minutes. Overall,

across 3,069 U.S. counties, the original NACo data set included 989 EDs and 147 SIPOs; these

counts were slightly more than doubled (through manual search) in our final data set, to 1954 EDs

and 334 SIPOs. Across the 783 U.S. cities with a population of 50,000 or greater, we identified

633 with EDs and 122 with SIPOs.

Governmental responses were not limited to EDs and SIPOs. For example, some states and

counties issued separate orders for restrictions on restaurants, gatherings, schools and non-essential

businesses. For consistency and tractability, given our coverage of three levels of government,

we focus mainly on EDs and SIPOs. However, at the state level we also consider the “earliest

restriction or closure” (ERC) as provided by Fullman et al. (2020), which takes the earliest state

policy that either closed schools, restaurants, bars or restricted gatherings.

Figure 2 shows the cumulative adoption of state-level policies as a function of date, by policy

and state (as indicated by state abbreviation). For example, Washington state was the first to declare

an ED, followed by California and Hawaii. It is also evident that there is an ordering in MRP policy

adoption, with the ordering starting with EDs, followed by ERCs, and then SIPOs. Notably, all

states declared an ED and an ERC at some point before April 1st, but not all states imposed a

5We used population in 2019 as estimated by the U.S. Census Bureau (2020). Where county and city governments
have been consolidated into one jurisdiction, we treat the entity as a county in our data set.

15



SIPO.

Figures 3 and 4 show the timing of county-level EDs and SIPOs adoptions, respectively. The

main finding here is that county-level EDs are much more common than SIPOs. We also observe

that EDs are less common in the less-populated areas of the central U.S., as well as the far north-

eastern U.S. This is not surprising as these regions were not heavily impacted by COVID-19 before

April 2020.
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Figure 2: Cumulative Number of States Adopting a Given Mobility Restricting Policy by Date

Notes: Cumulative number of state-level MRP adoption by date. New adoptions on a given date are represented with
state abbreviations.
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Figure 3: Timing of County Emergency Declarations in the U.S. from February 14 to June 11,
2020.
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Figure 4: Timing of County Shelter-In-Place Orders in the U.S. from February 14 to June 1, 2020

Figure 5 displays the relative timing of the adoption of state and county policies. For each of

the MRPs we consider, we compare pairs of policies (say “A” and “B”) and reports the number of

counties where policy A was adopted before policy B (blue line) and the number of counties where

policy A was adopted after policy B (brown line). In addition, we report the average relative time

(in days) between the adoption of policies A and B. For example, the top panel for state ED shows

that 3014 counties (out of 3069 in the full sample) were in a state that adopted an ERC later than

ED (with an average gap of 4 days), while 55 counties saw the opposite ordering. Looking at the

comparison between state ED and the four other MRPs, it is evident that state EDs were generally

adopted first, typically with long gaps before the adoption of a follow-up policy (e.g., 17 days for

state SIPO and county SIPO). A similar pattern is observed comparing state ERC (typically the

second MRP policy adopted after state ED) to the other MRPs. For example, all state SIPOs were

adopted after the state ERC (12 days later on average), and all but one of the county SIPOs were
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put in place after the state ERC. Finally, county ED measures tend to be introduced before state

SIPOs, while the relative timing of state and county SIPO adoptions tends to be balanced. Like

the pattern for state-level policies, county SIPOs are introduced later that county ED measures, on

average.

Figure 5: Pairwise Comparisons of the Relative Timing of Mobility Restricting Policy Adoption

Notes: For each of the four MRPs listed in bold, the figure shows the average relative adoption time (reported in days)
and the number of counties (reported in the boxes). Adoptions that come before are shown in blue and those that come
after in brown. For example, in the top panel for state ED, we report that of all counties that ever adopted county ED,
1931 counties adopted state ED before county ED (with an average gap of 8 days), while 23 counties adopted county
ED before state ED (with an average gap of 4 days).

There are three main conclusions from this section that have important implications for the

empirical analysis below. First, considering state-level policies, all states implemented some form

of MRP (although not all implemented the more restrictive SIPO), while at the county-level, 62

% of counties (representing 79 % of the U.S. population) implemented one or more form of MRP.

Second, a substantial share of the U.S. population was subjected to multiple MRPs simultaneously

(e.g., state ED, county ED, and county SIPO). Third, states and counties adopted MRPs in a stag-

gered manner, with early adopters implementing the policies several weeks before later adopters.

Further, there is typically a natural ordering of policy adoption, for example, state/county SIPOs

always follows state/county EDs. These features of the policy response to the first wave of the
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COVID-19 pandemic complicate the estimation of the causal effect of various MRPs on mobility.

Different jurisdictions often adopted a wide range of different policies, but not all of them: as a re-

sult, one might wish to estimate which of these MRPs work best, which motivates including them

simultaneously in the analysis.

3 Policy impact estimation framework

Figure 6 represents our conceptual causal chain. We focus here on the link between MRPs and

mobility behavior, and highlight two challenges that impede straightforward estimation of this

relationship. First, rather than a single event involving one policy at one spatial scale, the early

response to the COVID-19 pandemic included multiple policies at multiple scales. Furthermore,

the vast majority of these policies appeared in a compressed window of two months, limiting

the variation in “treatment timing” to inform the impact. Second, the conceptual causal chain

we posit in Figure 6 raises the prospect of endogeneity. Our focus is estimating the impact of

MRPs on mobility behavior. These policies by cities, states and counties are clearly a response to

perceived risk as informed by COVID-19 cases, hospitalizations and deaths. However, we might

also expect individuals to respond directly to these perceived risks, in addition to policies. Finally,

these policies and changes in mobility behavior are expected to influence disease prevalence and

hence future perceived risk as further disease outcomes are observed. In future work, it may be

that a structural approach to modeling this system would provide further traction in disentangling

these effects.

Figure 6: Conceptual causal chain. This article focuses on the relationship between policies and
mobility behavior (shaded).
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3.1 Empirical model specification

As a starting point for our model specification, we follow the previous literature and aim to estimate

the impact of mobility reduction policies (MRPs), enacted by different jurisdictions (states and

counties) at different points in time, using a linear two-way fixed effect estimator (TWFE):

Yit = αi +δt +
P

∑
p=1

βpDipt +X ′itγ + εit (1)

where i denotes county, t represents the day (from January 20 - April 21, 2020), and p is the index

for the five policies we analyze. Yit is one of the 20 different mobility and activity outcome variables

we described in Tables 2 and Appendix Table A.1. Dipt is a dummy variable equal to 1 when

county i is “treated” by a given MRP policy p within the set P: State ED (Emergency Declaration),

State ERC (Earliest Restriction and Closure), State SIPO (Shelter in Place Order), County ED,

and County SIPO on date t. To begin we follow the previous literature’s practice of analyzing the

impact of MRPs individually (i.e., by including them one at the time in the model), but we will

also report estimates of βp when all the impact of all policies are estimated simultaneously.

The vector of control variables Xit are observable predictors of mobility and activity, which

include daily precipitation, snowfall and mean temperature. In some specifications we also in-

clude binary indicators for whether the first COVID-19 case and, separately, the first COVID-19

mortality has been recorded in a county.6 Including these variables in the models have important

implications in terms of the required identifying assumptions. On the one hand, such controls

may help alleviate the omitted variable concerns described in the conceptual framework. On the

other hand, these controls may violate the strict exogeneity assumption, since mobility in previous

periods may have causal effect on future COVID-19 cases and deaths.

The fixed effect αi controls for time-invariant characteristics of each county, including typical

mobility patterns, rural or urban status, population density, the availability of transportation infras-

6Some counties never experience COVID-19 mortality events in the sample period, in which case the binary
indicator remains a zero throughout.
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tructure, and all other county-specific drivers of mobility that do not change over time.7 The date

fixed effect δt captures time-varying drivers of mobility and activity, including any national-level

event or announcement that influences mobility equality across locations (e.g., announcements

from the CDC), pronounced weekday/weekend differences documented in Figure 1, and any na-

tionwide weather-driven trend.

Like the previous literature reviewed earlier, the goal of the analysis is to identify the causal

effect of MRPs on mobility and activity measures, as represented by the vector of parameters

β . Identification of β requires a strict exogeneity assumption for the error term in Equation (1),

requiring that it is uncorrelated with the various policy indicators, conditional on the controls and

fixed effects included in the regression. This can be interpreted as the standard no pre-trends

assumption whereby the mobility outcomes in “control” counties provide a valid counterfactual

for the mobility outcomes in “treatment” counties that adopted MRPs. This assumption can be

tested by estimating the event-study analog of Equation (1) and testing for pre-trend differences

directly. Furthermore, when policies are included one at a time, the interpretation of β as the

average treatment effect on the treated relies on assuming that treatment effect is constant across

units and/or over time. We return to these important points below.

4 Results using the TWFE estimator

For the remainder of this paper, we will systematically investigate how researcher’s decisions in-

fluence the estimated effects of MRPs on mobility. The space of researcher’s degrees of flexibility

in this context is extremely large. We only focus on a subset of this space, which still includes

multiple dimensions: outcome variables, transformations of the outcome variables, combinations

of MRPs to consider, included covariates, regression weighting, and estimator used. Due to these

many dimensions we cannot present all the results at once. In the following sections, we will

present successive “slices” of the multidimensional space of researchers degrees of flexibility, thus

7In practice, many of those characteristics may change slowly over time (e.g., population density). For the purpose
of this analysis with a sample period that covers a three month period, we consider them time invariant.
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highlighting the numerous “forking paths” of the garden as in (Gelman and Loken, 2013).

Table 4 begins the empirical analysis by reporting the TWFE estimates of βp for a log-linear

specification with the dependent variable Completely Home (%). The log-linear specification is

one of many used in the previous literature, and we also consider alternative specifications further

below.

There are 8 columns in Table 4, each corresponding to a different combination of the MRPs and

control variables. In column (1) we consider only state-level MRPs and we find that all three state-

level policies (ED, SIPO, and ERC), considered in isolation of the city or county policies, lead to

statistically significant increases in the fraction of time spent completely at home. For example, the

state SIPO policies are associated with a 4.3% (0.043 log points) increase in the fraction of time

spent at home. In column (2) we consider only county-level MRPs and find stronger effects, e.g.,

a 9.0% increase in the fraction of time spent at home due to a county SIPO. Column (3) considers

city-level MRPs. Since the unit of observation for the mobility data is the county, we model the

effect of county population share residing in a city with an MRP. The estimated coefficient is

positive and statistically significant, indicating that a 10 percentage point increase in a county’s

population living in a city with mobility reduction policy increases the fraction of time spent at

home by 2.3%.

Since the MRPs are often overlapping (e.g., counties with a county SIPO may also have a

state ED or SIPO), we then estimate a model where all MRPs are included in the same regression.

Column (4) reports the results of this analysis, and shows that estimating the impact of MRPs on

mobility separately for state, county, or city-level policies or estimating the effects jointly leads to

very similar estimates. Among the state- and county-level binary policies, SIPO policies are the

strongest determinants of reduced mobility, as shown by the positive coefficients on the log fraction

of time spent completely at home. The estimates in column (5) confirm this result and show that

controlling for daily weather variables (precipitation, snow and mean temperature) which are also

drivers of mobility, does not substantially change the estimated MRPs effects. Columns (6) to

(8) complete the analysis by entering indicators for the date at which a county experiences its

24



Table 4: Two-Way Fixed Effects Estimates of the Impact of MRPs on Log Completely Home (%)

Dependent variable:

Completely Home (log)

(1) (2) (3) (4) (5) (6) (7) (8)

State Emergency 0.008∗∗∗ 0.010∗∗∗ 0.011∗∗∗ 0.009∗∗∗ 0.013∗∗∗ 0.011∗∗∗

(0.003) (0.003) (0.003) (0.003) (0.003) (0.003)
State Shelter-in-Place 0.043∗∗∗ 0.032∗∗∗ 0.033∗∗∗ 0.027∗∗∗ 0.026∗∗∗ 0.022∗∗∗

(0.004) (0.004) (0.004) (0.004) (0.004) (0.004)
State Earliest Restriction or Closure 0.022∗∗∗ 0.017∗∗∗ 0.020∗∗∗ 0.016∗∗∗ 0.022∗∗∗ 0.018∗∗∗

(0.005) (0.005) (0.005) (0.005) (0.005) (0.005)
County Emergency 0.030∗∗∗ 0.018∗∗∗ 0.018∗∗∗ 0.010∗∗∗ 0.017∗∗∗ 0.010∗∗∗

(0.004) (0.004) (0.004) (0.004) (0.004) (0.004)
County Shelter-in-Place 0.090∗∗∗ 0.066∗∗∗ 0.064∗∗∗ 0.063∗∗∗ 0.055∗∗∗ 0.056∗∗∗

(0.008) (0.007) (0.007) (0.007) (0.007) (0.007)
County Pop. Share Under City Policy 0.227∗∗∗ 0.193∗∗∗ 0.188∗∗∗ 0.165∗∗∗ 0.136∗∗∗ 0.122∗∗∗

(0.014) (0.013) (0.013) (0.013) (0.013) (0.013)
Temperature (mean) −0.001∗∗∗ −0.001∗∗∗ −0.001∗∗∗ −0.001∗∗∗

(0.0001) (0.0001) (0.0001) (0.0001)
Precipitation 0.063∗∗∗ 0.064∗∗∗ 0.063∗∗∗ 0.063∗∗∗

(0.001) (0.001) (0.001) (0.001)
Snow 0.035∗∗∗ 0.035∗∗∗ 0.035∗∗∗ 0.035∗∗∗

(0.001) (0.001) (0.001) (0.001)
Cases > 0 0.084∗∗∗ 0.077∗∗∗

(0.003) (0.003)
Deaths > 0 0.080∗∗∗ 0.069∗∗∗

(0.004) (0.004)

Day FE Yes Yes Yes Yes Yes Yes Yes Yes
County FE Yes Yes Yes Yes Yes Yes Yes Yes
Observations 285,405 285,405 285,405 285,405 282,997 282,997 282,997 282,997

Notes: Standard errors clustered at the county level. ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01

first COVID-19 case or confirmed death. Again, the addition of these factors does not lead to a

meaningful change in the estimated MRP effects.

The evidence in Table 4, albeit for only one mobility outcome, might lead one to conclude that

MRPs had the intended effect by significantly changing mobility behavior through an increase in

the fraction of time spent at home. In this case, the estimated MRPs effects are stable and robust

across a wide range of specifications, including the joint estimation of MRP effects, and the State

SIPO policies are the strongest determinants of reduced mobility. Next, we document that the

remarkable stability of the TWFE estimates of the impact of MRPs on log Completely Home (%)

generally applies to all the other mobility outcomes.
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4.1 Robustness of the TWFE estimates

In this section we continue the analysis of the log-linear specification and graphically report in

Figure 7 the estimates of the impact of State ED along with their 95% confidence intervals for the

14 mobility and activity indicators that take strictly positive values.8 Each subplot reports estimates

specific to a given mobility outcome. The height of each bar correspond to the magnitude of the

point estimate while the whiskers represent the 95% confidence intervals based on standard errors

clustered at the county-level.

The subplot in the upper left corner is for the Cuebiq (CQ) Mobility Index. We use different

colors to represent the specification of the predictors of mobility (detailed in the legend). Starting

from the left, the red bar shows the estimate of the effect of State ED on the Mobility Index when

only the state-level MRPs are included in the model (along with the county and date fixed effects),

corresponding to column (1) in Table 4. The specification shown by the orange bar adds all other

policies (county and city-level), and the one in yellow adds the weather controls. The specifications

shown with the pale green and darker green add in turn the indicator for the date of the first case

or first death related COVID-19 in each county. Finally, the bar to the right (blue) corresponds

to column (8) in Table 4 and includes all policies and predictors in the model. For example, in

the case of the Safegraph Median Distance, we find that the TWFE estimates point to a robust

and statistically significant positive impact, indicating that the state ED policies were effective in

reducing mobility, by about 0.02 log points, or 2% (recall that variables were re-signed so that

positive impacts can be interpreted as increase in social distancing).

8Since the Google Mobility indicators are reported as a change relative to a reference week and thus contain
negative values, we cannot analyze them with a log-linear model. We examine models where the dependent variable
is in levels below.
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Figure 7: Estimated Impact of State ED on Log Mobility Outcomes

Notes: Figure 7 reports the TWFE estimates of the impact of State ED on 14 mobility outcomes using a log-linear
model. The color of the bars corresponds to the specification of the model (what MRPs and controls are included).
The height of each bar represents the magnitude of the point estimate while the whiskers represent the 95% confidence
intervals based on standard errors clustered at the county-level.

Remarkably, the robustness of the TWFE estimate of the impact of State ED policies on mo-

bility across the log-linear specifications that include in turn all other MRP (state, county, and

city) is evident for all 14 mobility outcomes in Figure 7. Specifically, for most of the mobility

outcomes (i.e., within each individual subplot bar graph), the point estimates are similar and the

95% confidence intervals are generally overlapping, and do not meaningfully change across the 6

specifications.

In the Appendix, we report a series of additional figures for the four remaining MRPs, simi-

larly structured as Figure 7 that further document the stability of the TWFE estimates of the impact

of MRPs on our 14 mobility outcome modelled with a log-linear specification: State SIPO (Fig-

ure A.1), State ERC (A.2), County ED (A.3), and County SIPO (A.4). Similar to the evidence in
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Figure 7, we find that for all MRPs, the TWFE estimates generally have roughly the same rough

magnitudes across specifications.

Figure 8: Estimated Sign and Statistical Significance of Estimated Impact of MRPs on Mobility
Outcomes

Notes: Figure 8 reports the TWFE estimates of the impact of all MRPs on 20 mobility outcomes using either a linear or
log-linear specification. All models include all MRPs included simultaneously and the weather and Covid-19 severity
controls

Based on the analysis of a single outcome (for example, log Completely Home (%)), it would

seem natural to conclude that MRPs played an important role in reducing mobility and increasing
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social distancing during the first-wave of the COVID-19 pandemic, as other researchers have noted

(e.g., Holtz et al. 2020). However, further analysis raises two key concerns. First, the stability of

point estimates across specifications in Figure 7 is a misleading, or at least incomplete, signal of

robustness. While such stability is often used as a basis for establishing a causal relationship, we

show later in our event study analysis that assumptions needed for credible difference-in-difference

estimation may not hold. Second, we find persistent issues with the direction of our main effect of

interest: for several outcomes and policies, the MRPs are estimated to decrease distancing rather

than increasing it as one would expect. To summarize this evidence visually, Figure 8 shows the

sign and statistical significance of the estimated coefficient on the MRPs from regressions where

the dependent variable enters either in levels, or through a log-transformation (as in Figure 7 and

all other related figures in the Appendix).

Throughout Figure 8, we rely on the “full” specification used in the final column of Table 4 (all

policies included simultaneously and including weather and Covid-19 severity controls). We there-

fore examine multidimensional space of researcher’s degrees of flexibility to focus on the impact

of the choice of outcome variable and MRP considered, investigating two possible transformations

of the outcome. Remember that all dependent variables have been re-signed to indicate mobility

reduction, so that we expect MRPs to lead to an increase in social distancing and increase the de-

pendent variables. The rows in the figure correspond to each of our 20 outcome variables while

the columns indicate a given MRP and whether the outcome variable is modeled in log or level.

Blue dots indicate the expected sign (positive, i.e., more social distancing) while red dots indicate

the unexpected sign. For either color, the darker version of the color indicates the estimated MRP

coefficient was statistically significant at the 5% level.

Statistically significant coefficients of unexpected sign (shown in dark red) are prevalent in

Figure 8. This is true for the majority of outcome variables for State ED in both level and log-linear

specification. Incorrectly signed impacts are also the majority result across policy and outcome

transformation for four outcome variables (Part Time Work, Median Distance, Full Time Work,

and Away at Least 3 Hours). In addition to the prevalence of unexpected signs, we also observe
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signs switching from statistically significant in one direction to significant in the other direction

as we vary either the outcome variable, or the policy and dependent variable transformation. For

example, the impact of State SIPO on Device Exposure is negative for the specification in levels

and positive (as expected) for the log-linear specification, and statistically significant in both cases.

Similar sign switches of the estimated impact of the same MRP on the same outcome are observed

for Part Time Work, Median Not Home Dwel Time, Completely Home, and Travelling More than

10 Miles.

What can explain such pervasive reversal of estimated MRPs impact across specifications?

A first possibility comes from the recent econometric literature documenting that when treatment

adoption is staggered and when there is heterogeneity between cohorts of units that become treated

at different times, the TWFE estimator fails to recover a meaningful average treatment effect (de

Chaisemartin and D’Haultfœuille, 2020b; Goodman-Bacon, 2021; Callaway and Sant’Anna, 2020;

Sun and Abraham, 2020; Borusyak et al., 2021). As shown in Figure 5 all MRPs analyzed in this

paper and in the previous literature were implemented in a staggered manner. Furthermore, coun-

ties that implemented MRPs at different times were likely impacted differently by these policies,

which could introduce between adoption cohorts treatment effect heterogeneity. Thus a first con-

sideration is that the estimates reported in the previous section might fail to recover the ATT due

to issues inherent to how the TWFE estimator handles treatment effect heterogeneity.9

A second possibility is that the parallel trend assumption—one of the central assumptions un-

derlying the identification of βp in the TWFE estimator—is invalid for some outcomes or MRPs.

In particular, in the case we highlighted earlier where the impact of state ED policies on the Com-

pletely Home (%) variable in the log-linear specification is positive and statistically significant but

negative and statistically significant in the specification in levels could indicate that the parallel

trend assumption holds in the log-linear specification, but not in the level specification (or vice

9In subsection A.4 in the Appendix, we perform the Goodman-Bacon decomposition that highlights how the
implicit use of counties treated earlier as controls for units treated later can be problematic. In particular, we find that
removing all comparisons that involve the use of counties treated earlier as control units from the TWFE estimator
frequently changes the sign of the estimated effect for the State ED and State ERC policies (the two MRPs that do not
have a well-defined control group throughout our sample period). However, the sign and magnitude of the estimated
effect remain stable for most other outcome variables, suggesting that a different assumption might also be violated.
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versa).10 Recent work by Roth and Sant’Anna (2021) highlight that in general, the parallel trend

assumption is sensitive to the specific functional form chosen in the estimating equation. The next

section presents a detailed analysis of pre-trends for all the mobility outcomes and MRPs.

5 Event study analysis

5.1 Specification

The DD analysis of the impact of MRPs on the mobility outcomes presented in the previous section

relies on the parallel trend assumption, which states that trends in the outcome (mobility indicator)

before the adoption of an MRP (known as “pre-trends”) are the same in the treatment (adopters)

and control (non-adopters) counties. An event study analysis provides a simple graphical approach

at documenting pre-trends, which we now implement and supplement with F-tests on the pre-trend

coefficients in order to test the parallel trend assumption.

To proceed, we use the same framework as in Equation (1), but index days relative to the event

(date of adoption of an MRP) by k. Therefore Dipk is a dummy variable equal to 1 when county

i is k days away from being “treated” by a given MRP policy p within the set P. As before,

the policy set is P = {state ED, state SIPO, state ERC, county ED, county SIPO}. Formally,

Dipk = 1{t−MRPip = k}, where MRPip is the policy p for county i. We take the common event

study approach of including a single dummy for all relative days before our event window (over

20 days pre-adoption of a policy) denoted by k = −21−, and another for all relative days after,

k = 21+ (over 20 days post-adoption):

Yit = αi +δt +

∑
p∈P

k=21
+

∑
k=−21−

θpk ·Dipk

+X ′itγ + εit (2)

10This concern over possible failure of the parallel trend assumption is heightened by the observation that many
individuals may have curtailed their mobility behaviors even if their state or county of residence was not under an
MRP, or in anticipation to the pre-announcement of a SIPO or other MRPs.
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The day before the adoption of a policy (k = −1) is omitted to serve as baseline. Like in the

standard DD analysis, we include county fixed effects (αi) to control for unobserved time-invariant

differences between counties, and day fixed effects (δt) to control for unobserved time-varying

drivers of mobility and activity that are common to all counties. We also include the full set of

time-varying control variables (Xit) we considered earlier (see last column in Table 4.) Finally, εit

is a county-day specific error term. Standard errors are clustered at the county level.

5.2 Results from the event study analysis

To begin, we focus on a single outcome, Completely Home (%) and graphically present estimates

of the event-study θpk coefficients (along with the corresponding 95% confidence intervals) in

Figure 9. We consider 8 different possible specifications of the dependent variable, including the

level and log-transformed specifications analyzed earlier. We also consider specifications where

the dependent variable is first-differenced, and specifications where the dependent variable is a

7-day moving average of the mobility outcome (as opposed to the daily-level value). We either

weight the underlying regressions by county-level population, or estimate them without weights.

We implement these 8 specifications because they have been used in the previous literature. The

labels on the right-end margins of each row in Figure 9 indicate the specification of the dependent

variable and use of weights. The 5 columns in Figure 9 correspond to the five MRPs we analyze.

Note that in each column, we report the estimated event-study coefficients for the relevant MRP

estimated in isolation (color) and in combination with the four other MRPs (black). To the best of

our knowledge, only a couple of papers have studied the identification of treatment effects under

multiple treatment. In an application focused on the impacts of school bonds on housing prices,

Cellini et al. (2010) derive estimators of the ”treatment-on-the-treated” and ”intent-to-treat” when

multiple bonds measures have been passed, assuming that dynamic effects only depend on the

length of time elapsed since treatment. Using simulation studies, Sandler and Sandler (2014)

highlight that in the case of multiple treatment, ignoring one or more treatment produces biased

estimates in general.
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Figure 9: Estimated Event-Study Coefficients for Completely Home (%)

Notes: Figure 9 reports the event-study estimates of θpk from equation (2) above for the Completely Home (%) outcome
under several specifications. The transformation and use of regression weights varies by row and the MRP varies by
column. The estimates are presented for both the MRP estimated in isolation (shown by the colored lines) and jointly
with all MRPs (shown by the black lines). Whiskers represent the 95% confidence intervals.

There are three main results that readily emerge from Figure 9. First, focusing on the post MRP

adoption period (to the right of 0 on the x-axis), most specifications and MRPs show results that

are consistent with MRPs increasing the Completely Home (%) variable (although there are a few

exceptions such as the 7-day moving average model for state ED and the first-differenced models

for state SIPOs). Second, with the exception of county ED, statistically significant and sizable
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pre-trends are apparent for most specifications and MRPs. Third, including all policy variables

simultaneously (black estimates) as opposed to individually, using population weights, or first-

differencing the outcome does not lead in general to a meaningful improvement in supporting the

parallel trends assumption.

To assess whether the issues with pre-trends and instability of the estimates identified previ-

ously could simply be due to our choice of dependent variable, we present additional slices of the

degrees of flexibility space below. Figures 10 and Appendix Figure A.10 continue the event-study

analysis by reporting estimates for all mobility outcomes, for the two initial specifications of the

dependent variable (log-linear and in level). Each box in the figures correspond to a given mobility

outcome and shows the estimated event-study coefficients (θpk) and 95% confidence intervals for

the 5 MRPs, each from a separate regression.

Examining first the results from the specification in levels for the outcomes, one can observe the

complex dynamics in the impact of MRPs on mobility and activity outcomes in the post adoption

period, as was also shown in Figure 9. Some policies have rapid impacts in decreasing mobility,

with impacts lasting from a few days, to the full 20 days in the post-adoption period. Notably, some

of the post MRP adoption estimates have the “wrong” sign, indicating that the introduction of an

MRP increased mobility and reduced social distancing (e.g., the state ED effect on Safegraph Away

at least 3 hours, or the county SIPO effect on Safegraph Median Home Dwell Time and Median

Home Share (%)). At the same time, it is also surprising to observe that the different MRPs can

have differently signed impacts on the same mobility outcomes (e.g., Safegraph Full Time Work),

which is increased by State SIPO and reduced by State ED.

Most importantly, however, it is again evident that sizable and statistically significant pre-trend

differences exist for at least one policy for each outcome. This adds to the evidence of failure

of the parallel trend assumption already shown in Figure 9 for the Safegraph Completely Home

(%) variable for all MRPs and a wider range of specifications. That is, looking at all available

mobility outcomes and for most policies analyzed, a large number of pre-trend coefficients are

statistically different from zero at the 5% level. For example, for the Cuebiq Travelling More Than
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10 Miles outcome, we can easily detect significant pre-trends for all five MRPs. Moreover, the

pre-trend patterns tend to vary across policies, again in the case of Cuebiq Travelling More Than

10 Miles outcome, the pre-trend coefficients are mostly positive for state ERC and county ED,

while negative for state ED, State SIPO, and County SIPO.

Figure 10: Estimated Event-Study Coefficients for All Mobility Outcomes, Based on the Log-
Linear Specification

Notes: Figure 10 reports the event-study estimates of θpk from equation (2) above for 14 mobility outcomes, using the
log-linear specification. Each estimated impact of MRPs are estimated from separate regressions. Whiskers represent
the 95% confidence intervals.

Figure A.10 in the Appendix is structured similarly as Figure 10 but focuses on models with

a specification in levels, which includes mobility outcomes from Google 11 For all outcomes,
11Recall that due to the log-linear specification of the model, outcomes from Google Mobility are not included

since they can on zero and negative values.
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we detect statistically significant pre-trends for one or more of the policies. Moreover, for any

given outcome, the pre-trends can be consistently positive or negative, depending on the MRP

considered. This heterogeneity in the impact of different MRPs on the same outcome is also

observed in the post-adoption period.

Figure A.11 summarizes the information about the pre-trends across the 8 specifications con-

sidered in Figure 9 and all outcomes. The figure reports the p-values from F-tests testing the null

hypothesis that the pre-MRP-adoption coefficients are jointly equal to zero. It is configured as a

heat-map, with the columns indicating the five MRPs estimated individually and then estimated

jointly (far right column). The rows correspond to the eight specifications for the dependent vari-

able that were considered in Figure 9. Each cell summarizes the results of 14 F-tests on pre-trends

coefficients, corresponding to the 14 mobility outcomes we analyze from Safegraph, Cuebiq, and

PlaceIQ.12 The number in each cell corresponds to the fraction of tests (out of 14) where the p-

value on the null hypothesis exceeds 0.05, indicating that the null hypothesis would be rejected at

the usual 5% significance level.

The results further confirm some of the evidence already documented: significant pre-trends

are pervasive. For example, all 14 out of 14 “no pre-trends” tests are rejected for all specifications

of the dependent variable for the state ED, state SIPO, state ERC, and simultaneous policies models

(as shown with a fraction of zero in the cells). For county SIPO, the parallel trend assumption is

rejected for all 14 outcomes in half of the specifications (first-difference, first-difference weighted,

log-linear weighted, and 7-day moving average weighted). The MRP for which the parallel trend

assumption appears most supported is county ED, although we fail to rejected at most for 6 of the

14 outcomes in 1 specification. All together, 672 F-tests on pre-trends coefficients were conducted

to construct Figure A.11. Out of those, we fail to reject the null hypothesis of “no pre-trends” only

34 times (out 672 tests) at the 5% significance level. Note that for simplicity we do not account

for multiple hypothesis testing, since controlling for it would only reduce the number of rejected

cases, reinforcing the result that pre-trends are pervasive.

12The Google Mobility outcomes are ignored here since we cannot apply the log transformation on them.
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Differences-in-differences and event-study approaches, implemented with standard TWFE es-

timators to the mobility outcomes to estimate the impact of MRPs provides definitive evidence

of estimates that are “robust” to the inclusion of covariates. But we also observe consistent vi-

olation of the parallel trends assumption—rejection of the null hypothesis of no pre-trends—and

major specification issues where the sign of the effect depends on choices made on the transforma-

tion of the dependent variable, e.g., linear versus log-linear versus first-difference. This combined

pattern of stability of estimates within-specification, but instability across specifications (for the

same outcome), and statistically significant pre-trends is observed for most outcomes considered.

We interpret this evidence that one or more of the assumptions required to interpret the DD and

event-study estimates as Average Treatment Effects on the Treated (ATT) are likely violated.

6 Heterogeneity-robust estimators for staggered adoption de-

signs

The recent econometric literature highlights that under the presence of staggered treatment and

treatment effect heterogeneity, the TWFE regressions underlying DD and event-study analyses

typically fail to recover the ATT (Sun and Abraham, 2020; de Chaisemartin and D’Haultfœuille,

2020b; Goodman-Bacon, 2021). The bias arises from the implicit construction of control groups

which include units that are themselves under the effect of a treatment.13 For example, in our

setting, TWFE regressions will implicitly use counties treated on March 15 to serve as controls for

counties treated on March 20; this might be a bad comparison if the treatment effect is dynamic,

or if the treatment effect is heterogeneous across units treated on different days. This same lit-

erature also provides various solutions to address the deficiencies of the TWFE estimators. New

event-study methods, for example from Callaway and Sant’Anna (2020), reduce the problem to

13Goodman-Bacon (2021) shows this issue with a decomposition result that reframes the TWFE estimator as a
weighted average of all possible two-by-two difference-in-differences estimators. Sun and Abraham (2020) propose
a general decomposition of the event study estimator for alternative choices of specifications that nests TWFE as a
special case.
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estimating “clean” difference-in-differences for each group of units that receive treatment at the

same time (also called “cohorts”) by comparing these units to proper “controls” (which are units

either not yet treated, or never treated). The cohort-specific difference-in-differences estimates can

then be re-aggregated to produce event study estimates that are free of the bias due to using treated

units as implicit controls.14

Applying the Callaway and Sant’Anna (CS) estimator in our setting with the control variables

leads to several observations being dropped, sometimes to the extent that a given model will not

be estimated.15 With this as a limitation, we only consider CS estimates that consider one MRP

at a time.In addition, because the CS estimator and related estimators only compare units that are

treated to units that are never or not-yet-treated, they explicitly restrict the number of post-treatment

periods for which we can estimate a treatment effect. In our sample all units are eventually treated

by a State ED and a State ERC, and the last unit to receive a state ED does so on March 16. This

means that no treatment effect of State ED can be estimated after March 16 with the CS estimator.

To ease comparison with the previous results in the paper, we report CS estimates focusing on the

three MRPs for which there are always proper “control” units during the sample period, namely

County ED, County SIPO, and State SIPO.

Figure 11 reports the CS estimates for the cohort-specific impact of these three MRPs on the

Completely Home (%) mobility outcome. These CS estimates are analog to the standard event-

study regression specification results presented above in Figure 9. Here, each MRP cohort (defined

as each individual MRP adoption date in the sample) is represented by a separate line and color. We

continue to present estimates for various transformation of the dependent variable as the previous

sections have shown how seemingly minor specification changes (e.g., linear versus log-linear) can

lead to widely different estimates.

14de Chaisemartin and D’Haultfœuille (2020a) propose a similar estimator motivated from the point of view of a
social planner who could discount future treatment effects, à la Manski (2005). Sun and Abraham (2020) propose an
alternative estimator obtained by interacting event-study coefficients with dummies for each treatment cohort. Both
alternatives weight cohort-specific treatment effects by relative cohort size.

15This occurs because the CS estimator requires a certain overlap of the categorical covariates between treatment
and control groups. While the overlap holds over the whole sample, it can fail to hold in some subsamples of smaller
size. In that case, the problematic subsample is simply dropped.
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Figure 11: Callaway and Sant’Anna Estimates of MRP Impacts by Treatment Cohort

The CS estimates in Figure 11 are noisy, as might be expected since they represent around 50

smaller, cohort sub-samples from the overall data set. At this level, we also find that significant pre-

trend effects are still present. The estimates for the 7-day moving average specification (row four)

appear better-behaved, with smaller pre-trend coefficients and some evidence of ATTs that indicate

that MRPs reduced mobility. Yet, even for this specification, we still observe estimates suggesting

that MRPs increased mobility for some adoption cohorts. We also find that the estimated ATTs

tend to be higher in places that implemented the policies earlier. This could be due to a greater

response to treatment among early adopters of MRP, but it could also be due to increased mobility

among the control units. Finally, because we are using units that are “not yet treated” as controls,
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this could also reflect changes in the composition of the control group.

Figure 12 is structured as Figure 11 but combines the cohort-specific estimates into a sin-

gle estimate using the aggregation method proposed in Callaway and Sant’Anna (2020) to obtain

heterogeneity-robust event-study estimates of the ATTs. Again, we focus on the Completely Home

(%) mobility outcome for illustrative purposes. For each MRP and transformation of the dependent

variable, two set of estimates are reported: with and without covariates. While the overall picture

is better than in the case of standard event study estimates, the aggregated CS estimates still point

to important pre-trend differences, especially for County and State SIPO. Notably, however, the

pre-event coefficients are small relative to post-treatment coefficients.
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Figure 12: Callaway and Sant’Anna Estimates of MRP Impacts Aggregated Across Treatment
Cohorts

Taken together, the evidence in Figure 12 for Completely Home (%) is mixed regarding the

impact of MRPs on time spent completely at home. In the case of County ED, the estimates point

to a positive impact on time spent completely at home (except for the specification using first

differences of the outcome in row 3). Similar patterns are observed for County SIPO, although the

estimates are noisier and pre-trend differences are more noticeable. For State SIPO the estimates
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are more dependent on the inclusion or exclusion of the covariates (weather variables and indicators

for county-level COVID-19 cases and mortality).

Among all specifications considered, the CS event study estimates for the 7-day moving aver-

age transformation appear most consistent with the “no pre-trend” hypothesis. As shown in Figure

A.12 in the Appendix, this holds across most outcome variables, although unexpected signs still

appear for a subset of outcome variables, especially looking at the impacts of County ED. This sug-

gests that—in combination with the heterogeneity-robust estimation—temporal smoothing over a

longer periods longer than 1 day helps the credibility of the estimator. In contrast, regressions using

the CS estimator still appear very noisy when the outcome is in level, in log, or first-differenced

(see Figures A.14, A.13, and A.15 in the Appendix respectively). One implication is that time-

aggregating the data may help improve the credibility of the parallel-trend assumption. Notably, a

similar finding emerges from the previous literature where event studies conducted with state-level

data (as opposed to county-level) generally produce well-behaved estimates (e.g., Andersen 2020;

Abouk and Heydari 2021; Dave et al. 2021). Thus, it may be that fine scale event study estimates

in our setting (daily at the county level) are beyond the capacity of the data and difference-in-

difference based methods, unless one is willing to relax the parallel-trend assumption.

7 Conclusion

In this article we analyze the impact of mobility reducing policies (MRPs) on mobility outcomes

during the onset of the COVID-19 pandemic, leveraging a uniquely broad coverage of policies

spanning the state, county, and city levels in the United States. Generalizing from previous research

which focused on selected mobility outcomes and used specific functional forms and TWFE esti-

mators, we analyze twenty mobility measures derived from aggregated mobile device signal data

using a wide range of specifications and estimators. We also analyze five different types of MRPs

both in isolation and jointly, consistent with the manner they were implemented at the state, county,

or city level.
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In this context, we find that the standard TWFE and event-study estimates are highly sensitive

to choices of mobility outcome and transformation of the outcome (e.g., linear versus log-linear)

being implemented. In particular, we uncover systematic violations of the standard parallel-trend

assumption for virtually all outcomes and MRPs. We also document that due to researcher’s de-

grees of flexibility, it is possible to focus on specific outcome variables and functional forms that

produce “well-behaved” estimates, and that usual robustness-tests based on the sequential addition

of covariates points to the stability of those estimates. Yet, for several outcomes we obtain widely

different results for the impact of MRPs on the same outcome (often with differing sign), but an-

alyzed through TWFE estimator on different functional forms. Based on this, one could conclude

that both the magnitude and the sign of the ATT associated with the effect of mobility reducing

policies on mobility remains largely unknown.

An emerging econometric literature highlights that in the presence of treatment effect hetero-

geneity and staggered treatment adoption, standard difference-in-differences and event-study esti-

mators can be severely biased (Goodman-Bacon, 2021; Sun and Abraham, 2020; de Chaisemartin

and D’Haultfœuille, 2020b; Borusyak et al., 2021). Indeed, we hypothesize that the unreliability

of the basic TWFE estimates we uncover is likely due to heterogeneity in the treatment effect of

MRPs between groups of counties that receive treatment at different times. When we implement

the recent estimator by Callaway and Sant’Anna (2020), we generally obtain more stable estimates

of the overall ATT of MRPs, where the direction of the estimated impact is more robust across

specifications. At the same time, these important new methods have noteworthy limitations. In

particular, we find that due to the interaction and overlap between different MRPs, heterogeneity-

robust difference-in-differences estimators fail to credibly estimate the impacts of multiple treat-

ments. Further, several of the estimated pre-MRP coefficients (i.e., “pre-trend” coefficients) are

statistically different from zero using these more recent estimators, which weakens the case for a

causal interpretation of the estimates. Finally, the transformation of the outcome variable still has

large impact on the estimated ATT, sometimes changing the sign of the estimates.

Taken together, there are three main implications to these results. First, since the onset of
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the pandemic, dozens of research articles used standard difference-in-differences and event-study

methods and broadly concluded that MRPs caused reductions in mobility, suggesting they were an

important tool to curb the spread of COVID-19. In addition, a related literature used similar meth-

ods to estimate the impact of MRPs on COVID-19 cases and deaths. Our reading of the evidence

suggests the previous literature appears to have focused on a set of specifications that are highly

sensitive to varying minor modelling decisions. Indeed, most prior studies of the impact of MRPs

found that such interventions reduce mobility, but this conclusion requires the researcher to favor

one specification over other plausible ones. As we find here, for most mobility outcomes, there

exist alternative specifications that provide contrary results. Overall, this suggests that robustness

of recent evidence of a causal impact of MRPs on reducing mobility is not unequivocal.

Second, a lot of recent attention in the econometric literature concerned with staggered treat-

ment adoption designs has focused on deriving treatment effect heterogeneity-robust estimators.

Our empirical results indicate that such estimators can produce estimates that are substantially dif-

ferent than those relying on standard DD methods (this point is also highlighted in Baker et al.,

2021), and indeed improve the credibility of the ATT estimates. However, our research highlights

important limitations of these new estimators. To begin, they currently do not account for multiple,

potentially interacting treatments. This is a serious limitation in the context of COVID-19, where

states, counties, and cities all implemented different kinds of MRPs. More generally, this limitation

applies in other settings, such as the study of federal and state overlapping policies (e.g., air quality

regulations, education policy, health insurance programs for low-income families). Furthermore,

causal identification with these estimators continues to rely on a parallel-trend assumption, and

the validity of such assumption usually depends on a specific functional form specification for the

dependent variable (Roth and Sant’Anna, 2021). When the chosen functional form substantially

impacts the treatment effect estimates or the existence of a “pre-trend”, there is little guidance from

theory to select a specific transformation. The Change-in-Changes model developed by Athey and

Imbens (2006) provides an alternative approach that does not depend on the scale of the outcome

variable, but this estimator currently does not easily accommodate the inclusion of covariates and
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of many different treatment groups. Continuing to improve and generalize methods for staggered

treatment adoption designs and multiple treatments is therefore an important avenue for future

research.

Third, although difference-in-differences research designs are straightforward to implement

with readily available data and can increase the credibility of observational studies (Angrist and

Pischke, 2010), our findings highlights that researchers’ degrees of flexibility can still have a

marked influence on the sign and magnitude of the estimated treatment effects. We explore the

role of researchers’ degrees of flexibility along four different margins: choice of outcome variable,

functional forms for the dependent variable, covariates, and estimation procedures. This is only a

subset of the margins along which degrees of flexibility exist.16 Estimating models for the full-set

of possible specifications is often impossible, and researchers’ degrees of flexibility in themselves

are not to be abhorred, as they are an irreducible part of research. However, the scale of available

discretion in choices made by researchers and their impacts on the estimates, even after condition-

ing on a “credible research design”, raises the question of when to believe the reported estimates.

The problem of pre-testing specifications and reporting only a set of results that “fits” within the

researcher’s overall narrative is well-known (Christensen and Miguel, 2018; Kasy, 2021). To mit-

igate it, Leamer (1983) argued that applied economists should report the full set of specifications

that they estimated, not just the ones that “worked”. Four decades later, his recommendation con-

tinues to be largely ignored. Even-though robustness tests are pervasive in the applied economics

literature, we find that it is possible that robustness holds along one margin, while (consciously or

unconsciously) ignoring that robustness fails along another dimension.

In light of our findings, instead of reporting robustness tests that work, one possibility could be

to report robustness that are increasingly strict until they fail. The relevant question is not whether

the results are robust, but instead “how much can we depart from the preferred choices before

the main findings no longer hold?”. In the context of COVID-19 research, this breaking-point

threshold is very low, especially when using standard TWFE regressions. Due to the urgency of

16For example, additional margins of flexibility include the number of lags and leads in event studies, the definition
of the treatment variables, or the choice of the temporal window used in the analysis.
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obtaining actionable policy results, these shortcomings were not fully appreciated by previous re-

search, including our own. The econometric work highlighting issues with common specifications

developed extremely fast and in parallel with the applied COVID-19 research. Therefore, further

developments are still needed to make rigorous causal inference about the effects of COVID-19

policies.
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A Online Appendix
This Appendix presents additional figures and tables that are described in the main body of the
paper. All Appendix figures start with the letter ‘A’, followed by a number to distinguish them
from the figures in the main body of the paper. The Appendix also contains a table with detailed
information about the mobility variables used in the paper. Finally, we report some additional
results based on the decomposition by Goodman-Bacon (2021).

51



A.1 Additional estimates of the impacts of MRPs on mobility

Figure A.1: Estimated Impact of State SIPO on Various Log Mobility and Activity Outcomes

Notes: Figure A.1 reports the TWFE estimates of the impact of State SIPO on 14 mobility outcomes using a log-linear
model. The color of the bars corresponds to the specification of the model (what MRPs and controls are included).
The height of each bar represents the magnitude of the point estimate while the whiskers represent the 95% confidence
intervals based on standard errors clustered at the county-level.
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Figure A.2: Estimated Impact of State ERC on Various Log Mobility and Activity Outcomes

Notes: Figure A.2 reports the TWFE estimates of the impact of State ERC on 14 mobility outcomes using a log-linear
model. The color of the bars corresponds to the specification of the model (what MRPs and controls are included).
The height of each bar represents the magnitude of the point estimate while the whiskers represent the 95% confidence
intervals based on standard errors clustered at the county-level.
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Figure A.3: Estimated Impact of County ED on Various Log Mobility and Activity Outcomes

Notes: Figure A.3 reports the TWFE estimates of the impact of County ED on 14 mobility outcomes using a log-linear
model. The color of the bars corresponds to the specification of the model (what MRPs and controls are included).
The height of each bar represents the magnitude of the point estimate while the whiskers represent the 95% confidence
intervals based on standard errors clustered at the county-level.
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Figure A.4: Estimated Impact of County SIPO on Various Log Mobility and Activity Outcomes

Notes: Figure A.4 reports the TWFE estimates of the impact of County SIPO on 14 mobility outcomes using a
log-linear model. The color of the bars corresponds to the specification of the model (what MRPs and controls are
included). The height of each bar represents the magnitude of the point estimate while the whiskers represent the 95%
confidence intervals based on standard errors clustered at the county-level.
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Figure A.5: Estimated Impact of State ED on Mobility and Activity Outcomes (in levels)

Notes: Figure A.5 reports the TWFE estimates of the impact of State ED on 20 mobility outcomes using a linear
model. The color of the bars corresponds to the specification of the model (what MRPs and controls are included).
The height of each bar represents the magnitude of the point estimate while the whiskers represent the 95% confidence
intervals based on standard errors clustered at the county-level.
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Figure A.6: Estimated Impact of State SIPO on Mobility and Activity Outcomes (in levels)

Notes: Figure A.6 reports the TWFE estimates of the impact of State SIPO on 20 mobility outcomes using a linear
model. The color of the bars corresponds to the specification of the model (what MRPs and controls are included).
The height of each bar represents the magnitude of the point estimate while the whiskers represent the 95% confidence
intervals based on standard errors clustered at the county-level.
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Figure A.7: Estimated Impact of State ERC on Mobility and Activity Outcomes (in levels)

Notes: Figure A.7 reports the TWFE estimates of the impact of State ERC on 20 mobility outcomes using a linear
model. The color of the bars corresponds to the specification of the model (what MRPs and controls are included).
The height of each bar represents the magnitude of the point estimate while the whiskers represent the 95% confidence
intervals based on standard errors clustered at the county-level.
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Figure A.8: Estimated Impact of County ED on Mobility and Activity Outcomes (in levels)

Notes: Figure A.8 reports the TWFE estimates of the impact of County ED on 20 mobility outcomes using a linear
model. The color of the bars corresponds to the specification of the model (what MRPs and controls are included).
The height of each bar represents the magnitude of the point estimate while the whiskers represent the 95% confidence
intervals based on standard errors clustered at the county-level.
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Figure A.9: Estimated Impact of County SIPO on Mobility and Activity Outcomes (in levels)

Notes: Figure A.9 reports the TWFE estimates of the impact of County SIPO on 20 mobility outcomes using a linear
model. The color of the bars corresponds to the specification of the model (what MRPs and controls are included).
The height of each bar represents the magnitude of the point estimate while the whiskers represent the 95% confidence
intervals based on standard errors clustered at the county-level.
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Figure A.10: Estimated Event-Study Coefficients for Mobility and Activity Outcomes (in levels)

Notes: Figure A.10 reports the TWFE estimates of the event-study coefficients as specified in Equation (2). MRPs
under consideration are represented by the color of each line. The whiskers show the 95% confidence intervals based
on standard errors clustered at the county-level.
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Figure A.11: Heatmap of F-tests for Pre-Trend Tests in Event-Study Regressions

Notes: Figure A.11 is a heat map based on the p-values from F-tests testing the null hypothesis that the pre-MRP-
adoption coefficients are jointly equal to zero in Event-study regressions. Each cell summarizes the results of 14
F-tests on pre-trends coefficients, corresponding to the 14 non-negative mobility outcomes from Safegraph, Cuebiq,
and PlaceIQ (Google Mobility outcomes are ignored here since we cannot apply the log transformation on them). The
number in each cell corresponds to the fraction of tests (out of 14) where the p-value on the null hypothesis exceeds
0.05, indicating that the null hypothesis would be rejected at the usual 5% significance level. The rows indicate the
transformation of the dependent variable while the columns indicate the MRP considered (estimated individually in
columns 1-5, and estimated jointly in column 6).

62



Figure A.12: Callaway and Sant’Anna Estimates of MRP Impacts Aggregated Across Treatment
Cohorts, with Outcomes Transformed with a 7-Day Moving Average

Notes: Figure A.12 reports heterogeneity-robust estimates of the ATT, using the method in Callaway and Sant’Anna
(2020). The MRP impact estimates are obtained from models estimated separately by MRP and excluding covariates.
The error bars represent 95% point-wise confidence intervals using the multiplier bootstrap.
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Figure A.13: Callaway and Sant’Anna Estimates of MRP Impacts Aggregated Across Treatment
Cohorts, with Outcomes in Logs

Notes: Figure A.13 reports heterogeneity-robust estimates of the ATT, using the method in Callaway and Sant’Anna
(2020). The MRP impact estimates are obtained from models estimated separately by MRP and excluding covariates.
The error bars represent 95% point-wise confidence intervals using the multiplier bootstrap.
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Figure A.14: Callaway and Sant’Anna Estimates of MRP Impacts Aggregated Across Treatment
Cohorts, with Outcomes Transformed with a First-Difference

Notes: Figure A.14 reports heterogeneity-robust estimates of the ATT, using the method in Callaway and Sant’Anna
(2020). The MRP impact estimates are obtained from models estimated separately by MRP and excluding covariates.
The error bars represent 95% point-wise confidence intervals using the multiplier bootstrap.
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Figure A.15: Callaway and Sant’Anna Estimates of MRP Impacts Aggregated Across Treatment
Cohorts, with Outcomes in Levels

Notes: Figure A.15 reports heterogeneity-robust estimates of the ATT, using the method in Callaway and Sant’Anna
(2020). The MRP impact estimates are obtained from models estimated separately by MRP and excluding covariates.
The error bars represent 95% point-wise confidence intervals using the multiplier bootstrap.
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A.2 Variables description

Table A.1: Details about the Mobility Indicators Used in the
Paper

Variable Source Description Units

Cuebiq
Mobility

Index
Cuebiq

Calculated using a derivative factor indicating the
distance between opposite corners of a box drawn

around the locations observed for users on each day.
The index for each county is the median of the

aggregated movements of all users within a county.
Values can be interpreted as: 5 - 100 km, 4 - 10 km,

3 - 1 km,2 - 100m,1 - 10m. An index of 2.5 for a
county, would mean the median user in that county is

traveling 250m

No
unit

Staying
Around
Home

Cuebiq
Percentage of users staying at home in any given

state/county. It is calculated by measuring how many
users moved less than 330 feet from home

%

Staying
Around

Neighbor-
hood

Cuebiq
Percentage of users traveling less than one mile from

home
%

Traveling
more than
ten miles

Cuebiq
Percentage of users traveling more than ten miles

from home
%

Grocery
and

Pharmacy

Google
Mobility

Changes in the number of visits to grocery markets,
food warehouses, farmers markets, specialty food

shops, drug stores, and pharmacies, relative to
baseline. The baseline is the median value, for the
corresponding day of the week, during the 5-week

period Jan 3–Feb 6, 2020

%

Parks
Google

Mobility

Changes in the number of visits to places like
national parks,public beaches, marinas, dog parks,

plazas, and public gardens, relative to baseline.
%

Retail and
Recreation

Google
Mobility

Changes in the number of visits to places like
restaurants,cafes, shopping centers, theme

parks,museums, libraries, and movie theaters,
relative to baseline

%

Residential
Google

Mobility
Changes in the number of visits to places of

residence relative to baseline.
%

Transit
Stations

Google
Mobility

Changes in the number of visits places like public
transport hubs such as subway, bus, and train

stations, relative to baseline
%
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Table A.1: Details about the Mobility Indicators Used in the
Paper

Variable Source Description Units

Workplaces
Google

Mobility
Changes in the number of visits to places of work

relative to baseline
%

Average
Time Not

Home
Safegraph

Average time a device is recorded as away from
home within a county, reconstructed from

”bucketed” time away from home

min-
utes

Full Time
Work

Safegraph
County share of devices that spent greater than 6

hours at a location other than their home geohash-7
during the period of 8 am - 6 pm in local time

%

Median
Distance

Safegraph

Median distance traveled from the geohash-7 of the
home by the devices during the time period

(excluding any distances of 0). The median is
provided at the census block group level and we take

the weighted mean of these medians at the county
level (using the number of devices as weights)

me-
ters

Median
Not Home

Dwell
Time

Safegraph

Median dwell time at places outside of geohash-7
home for all observed devices during the time period.

For each device, the observed minutes outside of
home across the day (whether or not these were

contiguous) are summed to get the total minutes for
each device. The median is first calculated across all

these devices at the census block group level, and
then at the county level

min-
utes

Part Time
Work

Safegraph

County share of devices that spent one period of
between 3 and 6 hours at one location other than their
geohash-7 home during the period of 8 am - 6 pm in

local time. This does not include any device that
spent 6 or more hours at a location other than home

%

Away at
least three

hours
Safegraph

County share of devices that spent at least 3 hours at
one location other than their geohash-7 home during

the period of 8 am - 6 pm in local time
%

Completely
Home

Safegraph
County share of devices which did not leave the

geohash-7 in which their home is located during the
time period.

%

Median
Home
Dwell
Time

Safegraph

Median dwell time at home geohash-7 (”home”) in
minutes for all devices during the time period. For

each device, the observed minutes at home across the
day are summed (whether or not these were

contiguous) to get the total minutes for each device.
The median is provided at the census block group

level and we take the weighted mean of these
medians at the county level

min-
utes
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Table A.1: Details about the Mobility Indicators Used in the
Paper

Variable Source Description Units

Median
Home
Share

Safegraph

Median percentage of time we observed devices
home versus observed at all during the time period.
The median is provided at the census block group

level and we take the weighted mean of these
medians at the county level

%

Device
Exposure

PlaceIQ

For a device, number of distinct devices that also
visited any of the commercial venues that this device
visited that day. The county-level DEX reports the

county-level average of this number across all
devices residing in the county that day. We use the

adjusted version of this variable, which accounts for
devices not seen living their home (further details

provided by the authors.

Count

A.3 Correlation between mobility measures
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Figure A.16: Pearson correlations between mobility outcome variables

70



A.4 Results from Bacon-Goodman decomposition
The recent econometric literature highlights that two-way fixed effect estimates do not gener-

ally identify an average treatment effect when treatment is staggered over time (de Chaisemartin
and D’Haultfœuille, 2020b; Goodman-Bacon, 2021). In particular, Goodman-Bacon (2021) shows
that the two-way fixed effect estimator can be decomposed as a weighted sum of all possible 2x2
difference-in-differences estimators generated by a staggered policy adoption design. Formally, let
k = 1...K be different groups of units ordered by the time at which they receive a binary treatment,
and U is a group that never receives treatment. Let ȳPOST (a)

b denote the sample mean of yit in group

b during group a post period, and define ȳPRE(a)
b similarly. Finally, let ȳMID(a,b)

a be the sample av-
erage of units in group a after group a becomes treated, but before group b becomes treated. Then
Theorem 1 of Goodman-Bacon (2021) shows that in the two-way fixed effect model with a unique
binary policy and no covariates, the DD estimator can be written as:

β̂
DD = ∑

k 6=U
skU β̂

2x2
kU + ∑

k 6=U
∑
`>k

[
sk

k`β̂
2x2,k
k` + s`k`β̂

2x2,`
k`

]
where the 2×2 diff-in-diffs estimators are:

β̂
2x2
kU ≡

(
ȳPOST (k)

k − ȳPRE(k)
k

)
−
(

ȳPOST ( j)
U − ȳPRE( j)

U

)
β̂

2x2,k
k` ≡

(
ȳMID(k,`)

k − ȳPRE(k)
k

)
−
(

ȳMID(k,`)
` − ȳPRE(k)

`

)
β̂

2x2,`
k` ≡

(
ȳPOST (`)
` − ȳMID(k,`)

`

)
−
(

ȳPOST (`)
k − ȳMID(k,`)

k

)
and the weights sk j are functions of group sizes and variance of treatment within groups.

This decomposition highlights two important potential pitfalls of the TWFE estimator. First,
due to the weights, any amount of treatment effect heterogeneity between groups means that the

ˆβ DD estimator can be quite different from the average treatment effect on the treated. Furthermore,
the β̂ DD estimator implicitly compares units that are treated early to units that are treated “later”
(the β̂

2x2,`
kl components). Thus if the treatment effect is time-varying, these comparisons will not

be informative about the (time-varying) average treatment effect on the treated.
To assess whether identification issues related to treatment effect heterogeneity in bias our

baseline TWFE estimates, we first estimate a modified version of (1) above including each policy
in isolation and no covariates. We then implement the Bacon-Goodman decomposition above, but
remove all β̂

2x2,`
kl components and normalize the remaining weights so that they sum to one. We

finally compute the ratios of these two estimators: the standard TWFE and the adjusted TWFE that
excludes the “treated earlier vs. later” comparisons.

∑k 6=U s̃kU β̂ 2x2
kU +∑k 6=U ∑`>k

[
s̃k

k`β̂
2x2,k
k`

]
(∑i X ′i Xi)−1(∑i X ′iYi)
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Figure A.17: Ratio of weighted coefficients with ”Later vs Earlier” comparisons removed to regu-
lar 2-way fixed effects coefficients

Figure A.17 presents the ratios for 14 outcome variables in levels and in logs (Google Mobility
outcomes are excluded since they include a lot of zeros). We note that for the county policies and
the State Shelter-in-place orders, the ratios are very close to one for most outcomes: removing the
“treated later vs treated earlier” comparisons does not substantially impact our estimates. However,
for the State ED and State ERC policies the discrepancy can be very large, with some estimates
having opposite signs depending on the outcome variable considered. This result is somewhat
expected from the Bacon Goodman decompositions: for State ED and State ERC there is no “true”
control group to estimate the impact of the policy. All units are subject to a state ED and ERC
at some point. As a result, removing the “treated later vs treated earlier” comparisons can have
a large impact on the overall estimate. These discrepancies lead us to suspect dynamic treatment
effects, which we further investigate with event studies in section 5.
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